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Direct lon Beam Sputtering versus Magnetron Sputtering
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* an ion source generates a broad ion beam (200 —
1000 eV), with Ar* or Kr,

* ions sputter at target at defined angle,

* sputtered target material is deposited at the substrate,
* limited deposition rates, limited target dimensions,

» because of variable primary ion energy the energy
of sputtered atoms is free controllable in a range of
approx. 5 to 20 eV,

* a lot of publications about that from “IOM & Co
workers” in 2005 to now

* a special magnetic confined plasma is generated by
permanent magnets at a pressure between 102 to
102 mbar (magnetron),

» mostly used: argon,

* simple construction,

* high deposition rates, large target dimensions,

* primary ion energy normally 250 to 400 eV,

* maximum primary energy is about 750 eV,

* but energy of sputtering ions is determined by
the plasma parameters (pressure, power) and not
free controllable,
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Principle of the Dual Target Magnetron (DTM)

Principle Targets and sputter areas
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With:
W, (U, Uy) = U,-U,, 4 + C*U, U, : Voltage for sputtering (typ. 300 to 400 V),

U.noqe: Potential of the anode (typ. 25 to 75 V),
U,: Accelerator voltage target 2,
Idea of Dual Target Magnetron (DTM): C : Faktor approx. 0.7 10 0.9

« inside of the target (target 1) at place of the erosion zone (highest sputtering) an isolated target area (target 2) is
mounted,

* target 2 can be hold at negative potential against target 1 of up to 1.000 V, - additional ion acceleration of primary ions
at this place,

* primary ions (Ar+) will be mostly accelerated collision less from the main plasma 5 to 15 mm over target 2,
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Primary lon Energy and Sputter Yield

comparison sputter yield, Ar+-->Cu, ITO, C, Si
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Comparison of exp. estimated sputter yield (left y-axis) after (1) and
theoretical sputter yield values (right y-axis) in dependence from the primary
ion energy, DTM at constant plasma (80 W, 1x102 mbar argon)

Estimation of the behavior of the Sputter Yield at
target 2:

» deposition rate R measured with quartz monitor (=
deposited mass proportional to deposited atom
number),

« current I, is proportional to the number of sputtered
ions,

» then the sputter yield is proportional to:
*Yexpo(Wion) ~ R/l, (1)
* the figure shows good agreement between

theoretical [1] and experimental sputter yield for four
target materials

[1] https://www2.iap.tuwien.ac.at/www/surface/sputteryield
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Primary ion energies in comparison in magnetron sputtering
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* some increase to low pressure, * some increase with power, * plasma independent increase by U,
* some increase to high power,
Total range: 250 to 600 eV *Total range: 250 to 500 eV

*Total range: 250 to >1250 eV

[1], [2] www.jenion.de/news
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DTM Sputtering and layer growth
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Processes at the target:

primary ions with Wion impinge on target,
target atoms will be sputtered,

primary ions introduce into the target
surface (max. 10 nm),

primary ions will be reflected as fast
neutral atoms or ions,

on some targets negative ins will be
created (e.g. TCO’s) and accelerated by
the sputter plasma.

Processes at the gas/plasma:

consider only low (collision less) pressure
(10 mbar)

Processes at the substrate:

Question: What are the corresponding energy distributions ? a) Particles from the plasma:
. Argon ions from the plasma sheet,
a) Measurement: . Electrons from the plasma sheet (low
. ions and electrons from the sputter plasma (plasma probes, influence),
Retarding Field Analyzer Jenion), . UV-light from the sputter plasma.
. lon energy distributions of sputtered and backscattered ions
(DIBS > 10 papers from IOM Leipzig with Hiden Analytical) b) Particles from the target:
] ] . Sputtered target atoms,
b) Simulation: . Fast reflected neutrals,
. energy of sputtered target atoms — SRIM [1], . Sometimes: fast negative ions
. energy of scattered primary atoms — Tridyn [2]
[1] J. Ziegler, SRIM Transport of ions in matter, www.srim.org
[2] W. Moeller, Tridyn, https://hzdr-innovation.de/products/simulationssoftware-tridyn/
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Important: the mass ratio M._ /M

mass ratio (M;,,/M,,4c):

lon target

* if Mirget IS lower than Mg, both sputtered target atoms and
reflected neutral argon atoms have lower energies,

* if My,get is higher than M, both sputtered target atoms have
higher and reflected neutral argon atoms may have energies up
to the primary ion energy.

Backscattering regions and mass ratio
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Example: DTM Sputtering of Art > Aluminum

Sputtered atoms
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Demonstration experiment with DTM:
« pressure 102 mbar (= 2 to 4 collisions target >

substrate),

* plasma power 80 W,
* primary ion energy from 350 to 1.100 eV
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mass density
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Example: DTM Sputtering of Ar* = Silicon % _40

Sputtered atoms w23

Energy distribution sputtered atoms Ar+ --> Si

0,400 3006V | 70006V
Ytot 0,44 0,77
0,350 - Wmean[eV, 8,3 14,7

0y EE B s s
ol L

s
(]
s ——300 eV
s 02007 ‘ ‘ ‘ —=—1000 eV
> 0,150 | ‘ ‘ ‘
0,100 - ‘ ‘ ‘
o,oso—( ———L——L—‘——
0,000 ?
0 10 2 3 4 50 60 70 80 Amorphous or crystalline silicon layers on <100> silicon in
Wagom[eV] dependence from temperature and the primary ion energy
sputtered with the DTM
backscattered ions/atoms
Backscattered ions Ars --> Si refecton specira 106 2mbar Ar > S Demonstration experiment
5,00E-03 h with DTM:
300 eV 1000 eV o
‘ ‘ Rtot 0.00148] 0,00207 3 ¢ pregsyre 102 mbar (= 2 to
4,00E03 1 QF ﬁ — WWLHT Mol 267 4 collisions target >
" . substrate),
g 3,00E-03 { ﬂ» —' — % % et Em A * plasma power 80 W,
2 A g — « primary ion energy from 300
E 200E03 1 — <l» —‘ — 4— # et w© to 870 eV,
L J L i * substrate temperature from
100803 17 ‘ ‘ o ‘ ‘ S ) 50°C to 500 °C
0,00E+00 T T " " - 400 500 600 700 800 900 1000
0 50 100 150 200 250 300 vavetenath (o)
WoaesleV] Reflection spectra of the silicon layers on <100> silicon at 350 C in

dependence from the primary ion energy sputtered with the DTM

DTM Sputtering: some simulations and experiments — Jenion 3/25



11

Example: DTM Sputtering of Art = Copper

Sputtered atoms
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Demonstration experiment with DTM:
« pressure 102 mbar (= 2 to 4 collisions target >
substrate),

* plasma power 80 W,

* primary ion energy from 250 to 800 eV
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Estimation of the energy flux to the substrate

A Direct sputter plasma at substrate:

ez ] _ main sputter dE/dAp,asma = Jou/® * Esubmean (1)
Ar CuT |
" plasma

Backscattered neutrals (argon):
dE/ dAback =jprirr/ e’F V*Rtot* Ebackmean (2)

target 2 (Cu)
target 1 (Cu)

y e oy var aesin Sputtered target atoms:
] ] 1l anode pu g ) . e, %
| || 5 N J )H—' dE/ dAtar =/prirr/ e FV Ytot Etarmean (3)
T Total energy flux:
= . @ ] .\ @ ] AE/dA s = AE/DA, psmat AE/AA a0+ AE/DA,,, (4)
With:

Jsup— iON current density at substrate (100 uAcm?),

E.uomean — Mean energy from argon ions at substrate (25 eV),
Joim — Primary ion current density at target (3 mAcm2),

FV — area factor (0,3),

R, — total reflection coefficient of backscattered argon (from
Tridyn),

Epackmean — Mean energy of backscattered argon from Tridyn)
Y.t — totaler sputter yield, (from SRIM),

E..mean — Mean energy of sputtered target atoms (from SRIM),

12
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Summary: Energy flux to the substrate
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UTivi Sputrering: some simuiatio

Sputtering Ar+ > Aluminum:

» direct plasma energy flux normal,

* neglect able energy flux from backscattered argon,
* energy flux determined by energy of target atoms,

 at 1.000 eV primary ion energy nearly 3 times total
energy flux

Sputtering Ar+ - Silicon:

« direct plasma energy flux normal,

* neglect able energy flux from backscattered argon,
* energy flux determined by energy of target atoms,
 at 1.000 eV primary ion energy nearly 3 times total
energy flux

Sputtering Ar+ - Copper:

« direct plasma energy flux normal,

» small energy flux from backscattered argon,

« energy flux determined by energy of target atoms,
» at 1.000 eV primary ion energy nearly 3 times total
energy flux,
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Summary and future work ?
Dual Target Magnetron (DTM) status:

Since 2020 several constructions of DTM’s had been tested by Jenion and are applicable for
research projects (planar linear DTM’s),

The working principle of the DTM is now clear and demonstrated,

Round, coaxial DTM’s are only small tested but seem make able,

Concepts for rotational magnetrons can be developed on basis of the linear DTM’s but request
solving of several technical issues (cooling, electrical insulation, high power, etc. ),

Status layer deposition with the DTM:

Although Direct lon Beam Sputtering (DIBS) is an acknowledged deposition method since more
then 30 years, not very much results exist on corresponding layer growth,

Since 2023 we have a interesting discussion with sputter experts about the influence of the
controlled primary ion energy to the corresponding layer growth in DTM sputtering,

Like shown here, the deposition effect can be simulated and experimental demonstrated,
More professional research should be done on this,

Future work:

Optimization of details of the Dual Target Magnetron,

DTM for RF-sputtering,

More investigations of layer properties, deposited with the DTM,

More Monte Carlo Simulation of the sputter effect (100 to 2000 eV, SRIM, Tridyn)
More investigations of the total energy flux at the substrate.

Acknowledgement to Prof. W. Moeller - Helmholtz Zentrum Dresden for the Tridyn Simulations
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Thank Youl!
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Monte-Carlo-Simulation mit SRIM & Tridyn

Incident Reflected
lon lon
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Basic processes at the target surface while sputtering
considered in Monte Carlo Simulations like TRIM or Tridyn [1]

TRIM (Transport of lons in Matter):

* developed for simulation of ion implantation in the 1990-
S,

* simulates in principle also sputtered atoms and
backscattered ions

Incident ion:

* incomimg ion with energy W,
PKA - priméry nock on atom:

« target atom direct sputtered from primarily ion

SKA - secondary nock on atom:
« target atom sputtered indirect from primarly ion (may be
by impact cascade)

TRIM und SRIM: do only simulate the PKA at the first
monolayer

- Sputtered target atoms are more or less ok,
backscattered ions with bigger derivations

TRIM.SP und TRIDYN: do simulate PKA and SKA ?
- Both sputtered atoms and backscattered ions ok

16 [1] W. Eckstein, Computer Simulations of lon-Solid Interactions, Springer Series in Material Science 10, 1991, 178
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recrystallized grain structure DTM
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A. Anders, “A structure zone diagram including plasma based deposition and etching”, Thin Solid Films, Volume 518, Issue
15, 31 May 2010, Pages 4087-4090
17

DTM Sputtering: some simulations and experiments — Jenion 3/25



